Isochoric *PVTx* Measurements for the Carbon Dioxide + 1,1-Difluoroethane Binary System

Giovanni Di Nicola,* Fabio Polonara, and Giulio Santori

Dipartimento di Energetica, Università Politecnica delle Marche, Via Brecce Bianche, 60100, Ancona, Italy

Roman Stryjek

Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland

PVTx measurements for carbon dioxide (CO₂, R744) + 1,1-difluoroethane (CH₃CHF₂, R152a) for both the twophase and the superheated vapor regions are presented. The measurements were taken with a constant volume apparatus at temperatures ranging from (223 to 343) K and pressures from (60 to 3890) kPa along eight isochores. The data obtained in the two-phase region were used to derive vapor—liquid equilibrium (VLE) parameters using a flash method with the Carnahan—Starling—De Santis equation of state (CSD EOS). The dew point was also found for each isochore from the intersection of the P-T sequences. Results from the superheated region were compared with those predicted from the CSD EOS. The complete set of data was also compared with the REFPROP 7.0 prediction.

Introduction

Low-temperature refrigeration applications, i.e., cascade cycles operating with two different working fluids,¹ are a very interesting field for the food industry. The validity of the cascade cycle has recently been extended to temperatures between (243 and 233) K by using carbon dioxide as the low-stage refrigerant. Because of its triple-point temperature of 216.58 K, carbon dioxide is no longer a feasible solution for vapor compression cycles intended for use at lower temperatures. An obvious solution to overcome this drawback could be a blend containing carbon dioxide. For this reason, recently, our attention turned to systems composed of hydrofluorocarbons (HFCs) in mixtures with CO₂.

In previous studies, the *PVTx* properties of the $CO_2 + R41$, $CO_2 + R116$, $CO_2 + R125$, $CO_2 + R32$, and $CO_2 + R23$ systems were measured by an isochoric method,^{2–4} the Burnett method,^{5–9} and a solid–liquid equilibrium apparatus.^{10,11} In this paper, the *PVTx* properties of the $CO_2 + R152a$ binary system are studied with a constant volume apparatus.

R152a is an important hydrofluorocarbon used as a refrigerant, blowing agent, aerosol propellant, and cleaning agent. The combination of CO₂ and R152a provides important information for future applications. To our knowledge, no experimental results have been published in the open literature on the *PVTx* properties of this specific binary system. Isochoric measurements were consequently taken, covering temperatures from (223 to 343) K, to make up for the lack of vapor—liquid equilibrium (VLE) and *PVTx* data. VLE parameters were derived from data in the two-phase region, applying the Carnahan—Starling—De Santis equation of state (CSD EOS).¹² Data obtained from the superheated region were also compared with the predictions obtained with the CSD EOS.

Experimental Section

Chemicals. Carbon dioxide and 1,1-difluoroethane were supplied by Sol SpA and Union Carbide, respectively. Their purity was checked by gas chromatography, using a thermal conductivity detector, and found to be 99.99 % and 99.94 %, respectively, basing all estimations on an area response.

Apparatus. The setup has already been described elsewhere,¹³ so it is only briefly outlined here. The main changes made to the original apparatus^{13,14} concerned the twin thermostatic baths filled with different silicone oils (Baysilone M10 and Baysilone M100, Bayer). After charging with the sample mixture, the setup could be operated over two temperature ranges, approximately from (210 to 290) K and from (290 to 360) K, depending on which bath was used.

The thermostatic baths were easy to move thanks to the new system configuration. The spherical cells and pressure transducer were immersed in one of the two thermostatic baths. An auxiliary thermostat was used to reach below-ambient temperatures. The cell volume was estimated (as explained elsewhere¹³) to be (273.5 \pm 0.3) cm³ at room temperature.

The pressure and temperature data acquisition systems were identical to those of the previous apparatus.^{13,14} A PID device was used to control the temperature, which was measured using a calibrated resistance thermometer; the total uncertainty of the temperature measurements was \pm 0.02 K. The uncertainty in the pressure measurements stems from the uncertainty of the transducer and null indicator system and the pressure gauges. The uncertainty of the digital pressure indicator (Ruska, model 7000) is \pm 0.003 % of its full scale (6000 kPa). Temperature fluctuations due to bath instability can also affect the total uncertainty in the pressure measurement, which was nonetheless found to be less than \pm 1 kPa.

* Corresponding author. E-mail: anfreddo@univpm.it.

Experimental Procedure. Mixtures were prepared using the gravimetric method. First of all, the pure samples were charged

Table 1. Measurements at Bulk Compositions, z_1 , and Masses, m_1 and m_2 , for the CO₂ (1) + R152a (2) System over the Temperature Range ΔT and Pressure Range ΔP with Resultant Dew Temperatures, T_d , Dew Pressures, P_d , and Binary Interaction Parameters, K_{12} and K_{12dew}

	ΔT	ΔP	Ν	m_1	m_2	T _d	Pd		
Z1	K	kPa	mol	g	g	K	kPa	K_{12}	K_{12dew}
0.117	223-343	60-689	0.0721	0.371	4.206	293.4	565	-0.023	-0.097
0.250	223-343	99-700	0.0728	0.802	3.615	288.4	566	-0.023	0.001
0.389	223-343	157-850	0.0889	1.519	3.587	289.5	690	-0.028	-0.121
0.503	223-343	232-1136	0.1193	2.642	3.923	291.8	926	-0.022	-0.057
0.631	223-343	332-1545	0.1668	4.066	4.629	290.9	1279	-0.027	-0.036
0.658	223-343	356-1580	0.1678	4.864	3.794	291.8	1281	-0.016	-0.047
0.731	223-343	428-1936	0.2072	6.661	3.686	291.1	1560	-0.011	-0.030
0.873	223-343	578-3890	0.4599	17.661	3.868	291.4	2996	-0.008	-0.018
							avg.	-0.020	-0.051

Table 2. Experimental Molar Volumes, V, as a Function of Pressure, P, and Temperature, T, at Overall Composition z_1 in the Two-Phase Region for the CO₂ (1) + R152a (2) System

Т	Р	V	Т	Р	V	Т	Р	V	Т	Р	V
K	kPa	$dm^3 \cdot mol^{-1}$	K	kPa	$dm^3 \cdot mol^{-1}$	K	kPa	dm ³ ·mol ⁻¹	K	kPa	$dm^3 \cdot mol^{-1}$
$z_1 = 0.117$		$z_1 = 0.389$		$z_1 = 0.631$			$z_1 = 0.731$				
223.09	60	3.783	223.11	157	3.071	223.13	332	1.636	223.11	428	1.317
228.04	72	3.784	228.06	179	3.071	228.07	382	1.636	228.05	499	1.317
232.98	85	3.785	233.00	203	3.072	233.03	433	1.637	232.99	574	1.317
237.92	101	3.786	237.93	228	3.073	237.96	486	1.637	237.92	650	1.318
242.88	120	3.786	242.89	256	3.073	242.91	540	1.637	242.88	727	1.318
247.89	143	3.787	247.90	286	3.074	247.92	597	1.638	247.89	806	1.318
252.93	169	3.788	252.94	320	3.075	253.01	661	1.638	252.93	887	1.318
257.97	199	3.789	257.98	358	3.075	258.03	721	1.638	257.98	968	1.319
263.03	234	3.790	263.05	400	3.076	263.07	785	1.639	263.05	1050	1.319
268.10	275	3.791	268.11	447	3.077	268.11	854	1.639	268.12	1135	1.319
272.96	320	3.791	273.10	499	3.077	273.11	927	1.639	273.11	1222	1.320
277.98	373	3.792	278.03	557	3.078	277.94	1001	1.640	278.03	1312	1.320
283.00	433	3.793	283.01	622	3.079	282.98	1085	1.640	283.01	1408	1.320
287.97	500	3.794	287.99	663	3.079	287.96	1174	1.641	287.99	1509	1.320
	$z_1 = 0.25$	50		$z_1 = 0.50$	3		$z_1 = 0.653$	8		$z_1 = 0.873$	3
223.11	99	3.739	223.12	232	2.284	223.10	356	1.624	223.11	578	0.593
228.05	114	3.740	228.06	265	2.285	228.04	411	1.625	228.05	695	0.593
232.99	132	3.741	233.00	299	2.285	232.98	467	1.625	233.00	829	0.593
237.92	151	3.742	237.94	334	2.286	237.92	524	1.625	237.94	976	0.594
242.87	173	3.743	242.90	372	2.286	242.88	583	1.626	242.90	1137	0.594
247.89	199	3.744	247.93	412	2.287	247.89	643	1.626	247.93	1311	0.594
252.93	228	3.744	252.96	455	2.287	252.93	705	1.627	252.95	1493	0.594
257.98	261	3.745	258.00	501	2.288	257.97	769	1.627	258.00	1689	0.594
263.04	299	3.746	263.05	551	2.288	263.04	836	1.627	263.06	1883	0.594
268.11	342	3.747	268.12	606	2.289	268.12	907	1.628	268.11	2077	0.594
273.10	390	3.748	273.11	665	2.289	273.11	982	1.628	273.10	2266	0.594
278.02	445	3.748	278.03	729	2.290	278.02	1060	1.628	277.98	2451	0.595
283.00	506	3.749	283.01	800	2.290	283.02	1144	1.629	283.01	2637	0.595
288.00	563	3.750	288.00	879	2.291	288.00	1234	1.629	287.97	2818	0.595

in different bottles, degassed to remove noncondensable gases and air, and then weighed with an analytical balance (uncertainty \pm 0.3 mg). After evacuating the cell, the bottles were then emptied into the cell immersed in the bath. The mixtures were charged in the vapor phase. The bottles were weighed again, and the mass of the charge was calculated from the difference between the two masses. The dispersion of the mass inside the duct was estimated to be between (0.01 and 0.06) g, depending on the charging temperature, pressure, and molar mass of the fluid, and finally subtracted from the total mass of the sample. The uncertainty in mixture preparation was estimated to be constantly lower than 0.001 in mole fraction.

After reaching the experimental temperature, the mixing pump was activated for about 15 min, and next, the mixture was allowed to stabilize for about 20 min before the data recording. After charging each mixture composition, the temperature was increased step by step.

Results and Discussion

The temperature and pressure ranges are shown in Table 1, along with the mixture's composition and the number of moles charged.

On the basis of the analysis of the slope of each T-P sequence, the experimental points were each attributed either to the superheated or to the two-phase region. Table 2 shows the experimental data within the VLE boundary, and Table 3 contains the *PVTx* data. The data for the two-phase region were fitted using the Antoine equation, whereas those relating to the superheated region were fitted by a second-degree polynomial, taking temperature as the independent variable. Then the solution of the two-phase and superheated regions was used to find the dew point temperature and pressure algebraically for each isochore. The uncertainties of temperature and pressure of the data correlated with the Antoine and polynomial equations were estimated to be of

Table 3. Experimental Molar Volumes, V, as a Function of Pressure, P, and Temperature, T, at Composition z_1 in the Superheated Vapor Region for the CO₂ (1) + R152a (2) System

Т	Р	V	Т	Р	V	Т	Р	V	Т	Р	V	
К	kPa	$dm^3 \cdot mol^{-1}$	K	kPa	$dm^3 \cdot mol^{-1}$	К	kPa	$dm^3 \cdot mol^{-1}$	K	kPa	$dm^3 \cdot mol^{-1}$	
	$z_1 = 0.117$			$z_1 = 0.389$			$z_1 = 0.631$			$z_1 = 0.731$		
292.99	562	3.795	293.09	699	3.080	293.10	1257	1.641	293.09	1572	1.321	
298.08	576	3.796	298.07	715	3.081	298.09	1287	1.641	298.07	1610	1.321	
303.06	589	3.796	303.06	731	3.081	303.07	1317	1.642	303.06	1648	1.321	
308.03	602	3.797	308.04	746	3.082	308.05	1346	1.642	308.05	1685	1.322	
313.02	615	3.798	313.03	761	3.083	313.04	1375	1.642	313.03	1722	1.322	
318.01	627	3.799	318.01	776	3.084	318.03	1404	1.643	318.02	1758	1.322	
323.00	640	3.800	323.00	791	3.084	323.01	1433	1.643	323.00	1794	1.322	
327.98	652	3.801	327.99	806	3.085	328.00	1461	1.643	327.98	1830	1.323	
332.97	664	3.801	332.97	820	3.086	332.98	1489	1.644	332.97	1866	1.323	
337.96	677	3.802	337.95	835	3.086	337.97	1517	1.644	337.96	1901	1.323	
342.95	689	3.803	342.94	850	3.087	342.96	1545	1.645	342.94	1936	1.324	
	$z_1 = 0.250$			$z_1 = 0.503$			$z_1 = 0.658$			$z_1 = 0.873$		
293.09	577	3.751	293.09	930	2.291	293.09	1290	1.629	293.08	3005	0.595	
298.07	590	3.752	298.07	952	2.292	298.08	1320	1.630	298.07	3114	0.595	
303.05	602	3.753	303.05	973	2.292	303.06	1350	1.630	303.04	3203	0.595	
308.04	615	3.753	308.04	994	2.293	308.04	1380	1.630	308.03	3292	0.595	
313.03	627	3.754	313.03	1015	2.293	313.03	1409	1.631	313.02	3380	0.595	
318.02	640	3.755	318.01	1035	2.294	318.01	1438	1.631	318.00	3467	0.596	
323.00	652	3.756	323.00	1056	2.294	323.00	1467	1.632	323.00	3554	0.596	
327.99	664	3.757	327.98	1076	2.295	327.99	1496	1.632	327.97	3638	0.596	
332.98	676	3.758	332.97	1096	2.295	332.97	1524	1.632	332.96	3723	0.596	
337.96	688	3.758	337.95	1116	2.296	337.96	1553	1.633	337.94	3807	0.596	
342.95	700	3.759	342.94	1136	2.296	342.94	1580	1.633	342.93	3890	0.596	

the order of \pm 0.4 K and \pm 2 kPa, respectively. The example of the dew point estimation method based on the slope discontinuity is reported in Figure 1. The solutions are given in Table 1.

VLE Derivation. The method used to derive VLE data from the isochoric measurements using the CSD EOS was described elsewhere.¹⁵ This EOS was chosen among two-parameter EOSs because its parameters are fitted to pressures and molar volumes along the saturation curve. For this reason, it is able to accurately represent saturation pressures, volumetric properties along saturation, and the vapor phase at the superheated region.

The method involves deriving the VLE parameters for each data point in the two-phase region using the "flash method" with the CSD EOS. For this method to be applied to isochoric data, we also need the volumetric properties of the two-phase region. The volumetric properties could be taken either from the EOS involved (assuming that it holds true for the representation over the entire range of the parameters) or from independent sources. Here, it was assumed that the CSD EOS holds true with the necessary accuracy over the entire range of the parameters.

Figure 1. Experimental *P*–*T* data and calculated dew points (\blacktriangle): \bigcirc , $z_1 = 0.117$; \square , $z_1 = 0.250$; \triangle , $z_1 = 0.389$; \bigtriangledown , $z_1 = 0.503$; \diamondsuit , $z_1 = 0.631$; \blacklozenge , $z_1 = 0.658$; \blacksquare , $z_1 = 0.731$; \blacktriangledown , $z_1 = 0.873$.

T, z_i , and n (number of moles charged) were kept constant during the correlation having the isochoric cell volume from the gravimetric calibration, and the objective function

$$Q = \sum_{i} \left(\frac{dP}{P}\right)^2 \tag{1}$$

was minimized tuning the K_{12} value. The correlation gives also the parameters of VLE (pressure and composition of both phases) at the bubble and dew point (not reported in tables) which were considered, obviously, as dependent variables. Figure 2 shows the scatter diagram of the relative pressure deviations which are almost temperature independent. The pressure deviations were found to be within ± 2 % for all series except a few points. The same trend of results was obtained comparing the experimental data with the REFPROP 7.0 prediction, as shown in Figure 3.

The obtained binary interaction parameters are reported in Table 1 together with the ones obtained by the dew point intersection method.¹⁵ The averages of the values are $K_{12} = -0.020$ and $K_{12\text{dew}} = -0.051$, both with a statistical uncertainty

Figure 2. Pressure deviations between experimental values and those calculated with the K_{12} coefficients for the CO₂ (1) + R152a (2) system. Symbols are the same as those denoted in Figure 1.

Figure 3. Pressure deviations between experimental values and those calculated with REFPROP 7.0 for the $CO_2(1) + R152a(2)$ system. Symbols are the same as those denoted in Figure 1.

Figure 4. VLE representation from the CSD EOS for the CO₂ (1) + R152a (2) system at three temperatures: ---, T = 223.15 K; ---, T = 248.15 K; ---, T = 273.15 K.

of \pm 0.005. Using the averaged K_{12} value from our measurements obtained with the flash method in the two-phase region data, we calculated the VLE at three different temperatures (T = 223.15 K, T = 248.15 K, and T = 273.15 K). The results are given in Figure 4. The CO₂ + R152a system reveals almost ideal behavior in terms of Raoult's law.

PVTx. Because there are no published data on the superheated vapor region for the binary systems considered, densities at the superheated region were also compared with the CSD EOS prediction. In this case, the coefficients of the CSD EOS fitted to data along the saturation line were extrapolated out of the range where they were fitted, and also, the K_{12} value, tuned to the low-temperature two-phase data, was assumed to be temperature independent. The AAD (V) value of 1.74 % was obtained, and slightly better results were achieved comparing the experimental findings with the REFPROP 7.0 prediction,¹⁶ obtaining an AAD (V) value of 1.02 %.

Conclusions

An isochoric apparatus has been used to obtain PVTx measurements on CO₂ + R152a. The binary interaction parameters were derived from experimental data in the twophase region, applying the flash method and the Carnahan– Starling–De Santis equation of state. The dew point parameters were found by interpolating the P-T isochoric sequences. The calculated binary interaction parameters were used to derive the VLE, which revealed an almost ideal behavior in terms of Raoult's law. The *PVTx* data were compared by the CSD EOS and by the REFPROP 7.0 prediction.

Literature Cited

- Stoecker, W. F. Industrial Refrigeration Handbook; McGraw-Hill: New York, 1998.
- (2) Di Nicola, G.; Polonara, F.; Ricci, R.; Stryjek, R. *PVTx* Measurements for the R116 + CO₂ and R41 + CO₂ Systems. New Isochoric Apparatus. *J. Chem. Eng. Data* **2005**, *50*, 312–318.
- (3) Di Nicola, G.; Pacetti, M.; Polonara, F.; Stryjek, R. Isochoric Measurements for CO₂ + R125 and CO₂ + R32 Binary Systems. J. Chem. Eng. Data 2002, 47, 1145–1153.
- (4) Di Nicola, G.; Giuliani, G.; Polonara, F.; Stryjek, R. Isochoric Measurements of the R23 + CO₂ Binary System. *Fluid Phase Equilib.* 2003, 210, 33–43.
- (5) Di Nicola, G.; Giuliani, G.; Polonara, F.; Stryjek, R. *PVT* Measurements for the R125 + CO₂ System by the Burnett Method. *Fluid Phase Equilib.* 2002, 199, 161–174.
- (6) Di Nicola, G.; Giuliani, G.; Passerini, G.; Polonara, F.; Stryjek, R. Virial Coefficients from Burnett Measurements for the R116 + CO₂ System. *Int. J. Thermophys.* **2004**, *5*, 1437–1447.
- (7) Di Nicola, G.; Giuliani, G.; Polonara, F.; Stryjek, R. CO₂ + R23 Binary System: Virial Coefficients Derived from Burnett Measurements. *Int. J. Thermophys.* 2003, 24, 651–665.
- (8) Di Nicola, G.; Polonara, F.; Stryjek, R. Burnett Measurements for the Difluoromethane + Carbon Dioxide System. J. Chem. Eng. Data 2002, 47, 876–881.
- (9) D'Amore, A.; Di Nicola, G.; Polonara, F.; Stryjek, R. Virial Coefficients from Burnett Measurements for the Carbon Dioxide + Fluoromethane System. J. Chem. Eng. Data 2003, 48, 440–444.
- (10) Di Nicola, G.; Giuliani, G.; Polonara, F.; Stryjek, R. Solid–Liquid Equilibria for the CO₂ + R125 and N₂O + R125 Systems: A New Apparatus. J. Chem. Eng. Data 2006, 51, 2209–2214.
- (11) Di Nicola, G.; Giuliani, G.; Polonara, F.; Stryjek, R. Solid–Liquid Equilibria for the CO₂ + N₂O, CO₂ + R₃₂ and N₂O + R₃₂ Systems. *Fluid Phase Equilib.*, in press.
- (12) De Santis, R.; Gironi, F.; Marrelli, L. Vapor-Liquid Equilibrium from a Hard-Sphere Equation of State. *Ind. Eng. Chem. Fundam.* 1976, 15, 183–189.
- (13) Giuliani, G.; Kumar, S.; Zazzini, P.; Polonara, F. Vapor Pressure and Gas Phase PVT Data and Correlation for 1,1,1,-Trifluoroethane (R143a). J. Chem. Eng. Data 1995, 40, 903–908.
- (14) Giuliani, G.; Kumar, S.; Polonara, F. A Constant Volume Apparatus for Vapour Pressure and Gas Phase *P-v-T* Measurements: Validation with Data for R22 and R134a. *Fluid Phase Equilib*. **1995**, *109*, 265– 279.
- (15) Di Nicola, G.; Giuliani, G.; Passerini, G.; Polonara, F.; Stryjek, R. Vapor-Liquid Equilibria (VLE) Properties of R-32 + R-134a System Derived from Isochoric Measurements. *Fluid Phase Equilib.* **1998**, *153*, 143–165.
- (16) Lemmon, E. W.; McLinden, M. O.; Huber, M. L. NIST Standard Reference Database 23, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), version 7.0; Gaithersburg: National Institute of Standards and Technology, 2002.

Received for review December 22, 2006. Accepted April 19, 2007. This work was supported by MIUR, the Ministry of Education, University and Research.

JE600583U